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Abstract

The sound spectrum of a bell is the total audible sound that is
radiated by the vibrating bell ‘and is a superposition of a large
number of tones, the so-called partials. Each partial is radiated by a
single structural eigenmode and can be characterized by its frequency,
strength and decay speed. The dynamic response and the acoustic
damping of the bell are calculated using finite elements and boundary
elements, respectively. Then the sound spectrum characteristics of a
major third bell are optimized by means of the sequential linear
programming method.

1. Introduction

The sound spectrum of a bell consists the superposition of a
large number of partials or overtones, each with a distinct frequency.
The . partial frequencies are determined uniquely by the shape and
material of the bell. During the slow decay of the sound spectrum the
partial frequencies remain the same since the weakly damped bell
behaves in a linearly elastic manner. In Fig. l1a a traditional North
European carillon bell system is shown.
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Fig. 1 a. Carillbp bell system; b. Bell system design variables

Every eigenmode vibrates with its own eigenfreéquency in a unique
modeshape, has an initial amplitude that is determined by the initial
conditions, excitation process and excitation point, and decays. with
its own decay rate due the damping related to the eigenmode. The
eigenfrequency, modeshape, damping and amplitude of an eigenmode are
called the modal properties. For an axi-symmetric bell as shown in
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Fig. la each eigenmode can be characterized by the combination of one
vibration mode in the horizontal and one in the vertical
cross-section, shown 1in Fig. 2. The dotted 1lines display the
undeformed shape of the midpiane of the bell.
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Fig. 2 Vibration modes of a traditional North European bell.
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Fig.3 Schematized sound spectrum of a minor third bell.
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Every eigenmode excites the air surrounding the bell, generating
a vibration in the air with the same frequency. This wvibration
propagates through the air (away from the bell) generating the sound
field. Not all partials in the sound spectrum are equally important.
To be important partials have to be loud and of low order. The
frequency ratios of these partials constitute the overtone structure.
For a traditional North European minor third bell the names of the
1owest and loudest partials, their frequency ratios, and eigenmode
codes {according to Fig. 2) are given in Fig. 3. ’

The subject of this paper- is the modelling and optimization of
the sound spectrum of bells. More specific, the frequency, strength
and decay rate of the limited number of important partials in the
gound spectrum, . are modelled and optimized with respect to the
geometry of the bell and the clapper. The geometry parameters
describing the shape of the bell and the clapper are used as the
independent variables in the modelling stage, and as the design
variables in the optimization stage, see Fig. 1b.

2. Contact model and dynamic response calculation

The dynamic response of the bell is calculated by a Finite
Element (FE) code, {11, | using axi-symmetric elements with
non-axi-symmetric deformations. Fig. 4a shows the applied finite
element mesh. The dynamic response of the bell can be determined if
the excitation of the bell is known. This requires knowledge of the
contact force between bell and clapper. However, the contact force
during the collision is unknown beforehand. Therefore the model of the
contact phenomenon has to be combined with the FE model of the bell.
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Fig. 4 a. FE-mesh for the structural :equnse‘calculation
b. BE-mesh for the sound pressure calculation




The compression af{t) between the bell and the clapper in the
contact point, perpendicular to the bell wall, is assumed to be caused
by the normal component Fn(t) of the contact force only, see Fig. 5.

Further it is assumed that the relation between Fn(t) and the

compression «(t) can be described by Hertz's law
F(E) = kix(t) (1)

where k is a constant depending on the geometry and material
properties of the colliding bodies. The compression a{t) perpendicular
to the bell wall in the contact point C is defined as the difference
between the displacement wcl(t) of the clapper and the displacement

wb(t) of the bell in contact point C, both normal to the bell wall,

sese Fig. 5.

Fig. 5. Cohtact model of bell and clapper

Using the finite element model of the bell the displécement wb(t)

can be expressed in the unknown contact force F(t). In a similar way
the displacement of the clapper wcl(t) can be expressed in F(t), using

the equation of motion of the clapper. The obtained expressions for
wcl(F(t)) and wh(F(t)) are substituted in Eq. (1) '

P . 1.5
F(t)cos(B) = k{wcl(F(t)) : wb(F(t))} (2)

Eq. (2) is a non-linear equation in the unkwown contact force F(t) and
can not be solved analytically. Therefore Eq. (2) is discretized in
time and F(t) is solved numerically. At the same time the
displacements of the clapper and the bell are calcultated from
wcl(F(t)) and wb(F(t)) respectively. The described modelling and

calculation.of the dynamic response could be validated by measarements
on a real bell syster, [1].
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3. The modal damping; Fast analysis models

In common bell systems the damping of the eigenmodes 'is very
small. Therefore the damping can be neglected in the dynamic response
calculation as described in the previous section. The initial strength
of the overtones, see Fig. 3, will hardly be influenced by the small
damping.On the other hand the modal damping is essential for
detereming the decay rate of the partials.Due the damping the
vibrational energy of the eigenmodes.decreases exponentially in time
according to o

Ei(t) = Ei exp ( 2niwit) (3)

where ny is the modal damping and W, is the angular eigenfrequency.

The modal damping is subdivided into material damping and
acoustical damping which are of the same order of magnitude. The
material damping is defined as the dissipation of vibrational energy
into heat due to internal friction mechanisms in the bell material.
The acoustical damping is defined as the decrease of vibrational
energy of the bell due to the radiation of sound energy into the air
surrounding the bell. This damping component depends very strongly on
the modeshape and the eigenfrequency of the radiating eigenmode, and
on the geometry of the bell.

Material damping parameters can be found in literature or can be
measured on bells placed in a vacuum vessel. We calculated the
acoustical damping using the boundary element (BE)software code
SYSNOISE, [2]. Therefore a three-dimensional BE-mesh is needed, see
Fig. 4b. Due to the large mesh these computations are very time
consuming: one eigenmode requires about 3 hrs CPU on an Alliant FX4
computer. Therefore we computed "off line" the acoustical damping
parameters of about 300 different shaped bells, fitted approximating
damping models on the results, and we used these approximating models
in the optimization process.

Similarly we built approximation models for the eigenfrequencies
as function of the bell geometry by fitting eigenfrequency values
which are computed with the FE code mentioned in Section 2, [1]. Thus
we created "fast" analysis models for both the eigenfrequencies and
the acoustical damping of the most important eigenmodes of the bell.

4. Optimization

In this section the developed software is used to optimize. major
third bells. In 1985 we designed the first major third bell, [3]. Such
a2 bell has the frequency ratios 1 : 2 : 2,5 : 3 : 4 for the lowest
five eigenfrequencies. If the bell is struck with the clapper a strong
major third chord is generated due to the ratio, 2.5, of the third
eigenfrequency. In traditional West European carillon bells this ratio

is 2.4, resulting in minor third bells.
However, the design of the major bell not only meant the change




of one eigenfrequency, but other modifications of the bell timbre
occurred as well. We have (at least) two options to proceed. The first
option is to regard the major carillon as a complete new musical
instrument, and to optimize the sound of this instrument. Therefore a
lot of perceptual investigations has to be done in order to find the
optimization goals. In the second option it is tried to design major
" third bells with a timbre that, except of course the ratio 2.5,
resembles the timbre of the minor third bell as much as possible.The
ainor bell timbre is well known, and optimization goals can be
formultated more easily than in the first option. That is the reason
why we proceed with the second- option. However, it should be
emphasized that both options are legal.

In the optimization process we manipulate the bell system design
variables, see Fig. 1b, in such a way that a certain objectieve
function is minimized subject to a number of constraint functions. The
applied objective function is defined as the weighted sum of squared
deviations of response parameters (eigenfrequencies and damping
parameters) from the according target values. In the first stage of
the optimization process only the bell geometry is wvaried, and we used
the fast analysis models to calculate frequency and damping values. In
the second stage the obtained solution 1is taken as a starting
geometry for an optimization process, where the frequencies are
directly computed by the FE-progranm, while the damping parameters are
still taken from the fast analysis models. Finally, in the third stage
the optimized bell geometry is kept constant and used to find and
optimal strength of the overtones by variating the position of the
contact point between the bell and clapper.

As constraint functions only upper and lower bounds on the design
variables are used preventing the geometry to become infeasible.

The optimization problem is solved by means of the well-known
Sequential Linear Programming (SLP) method. In each iteration step the
optimization problem is linearized and a sequence of linear
programming subproblems is solved until convergence is reached.

5. Results and conclusions

The fast analysis models enable us te scan the design area with a
little computational effort. Therefore a number of starting geometrics
are randomly chosen within the design area, and then the bell is
optimized. In this paper we present the optimization process starting
from a bell geometry which is close to the geometry of the traditional
minor third bell, see Fig. 6a. The result of the fast optimization is
given in Fig. 6b. This geometry is taken as the initial geometry for
the FE-based optimization of the frequency ratios; the damping values
are still optimized using the fast analysis models for the acoustical
damping. Fig. 6¢c shows the final bell shape. The numerical results are

given in Table 1.
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Fig.6. a. Initial geometry; b. Result of fast optimization;
c. Result of FE-based optimization;
d. Optimization of the contactpoint.

In this case-stqgg we assumed the material damping to be constant on
the value 0.9*%10 , which represents a bell bronze of usual quality.

Target Initial | Results using:
Partial values geometry Fast FE-
name analysis analysis
freq. ntot freq. ntot freq. ntot freq. ntot

ratio | *10 Yratio | *107 % |ratio | *10”%|ratio | *x107%
Hum 1.000f 1.11 | 1.000) 1.21 | 1.000} 1.13 | 1.000} 1.13
Fundamental | 2.000}| 1.64 | 2.023] 1.54 | 2.055:°1.57 | 2.004; 1.46
Third 2.520] 1.62 2.380; 1.78 2.528; 2.03 2.510; 1.83
Fifth 2.997( 3.71 | 3.143| 2.80 | 3.048; 2.63 | 3.003; 2.68
Nominal 4.000] 3.82 4.008] 4.02 4.157] 4.03 4.017} 3.63
Twelfth 5.993| 1.61 | 6.027{ 1.65 6.100 ? 5.861] 1.65
Double oct. 8.000] 1.55 | 8.336; 1.67 8§.351} 1.82 2.025) 1.90 |

Table 1. Frequency ratios and total damping values for the
shape optimization of the bell.

The initial damping values are already close to the targst
values, because we chose the minor third bell as the initial geomstry.
The initial frequency ratios are quite far from the targets, but they
are very much improved in the fast optimization, while globally
preserving the quality of the damping values. The FE-based
optimization again improves the frequency ratios at somewhat improved
damping values. ‘

In minor third bells the contact point position is determined
experimentally, choosing the contact point that yields the "best” bell




sound. In practice the fifth 1is always excited very weakly.
Numerically optimizing the contact point position of the major thirgd
bell three options can be distinguished. The first option is to
disregard the strength of the fifth, placing all emphasis on the
remaining six partials. In the second option it is attempted to reach
the target value of the fifth, giving 1little importance to the
remaining six partials. The third option is not to excite the fifth at
all, disregarding the remaining six partials. In Table 2 the target
values and the sound power ratios, corresponding to the contact point
positions that result from the three options are listed.

Partial Target Power ratios |Power ratios {Power ratios
name Power ratios C1 Qz C3

Hum 1.000 1.000 1.000 1.000
Fundamental 16.946 1.383 0.800 0.428
Third 30.371 7.664 5.503 4.156
Fifth 0.356 2.353 0.503 0.000
Nominal 26.158 43.307 26.631 18.411
Twelfth 14.313 58.407 32.335 23.425
Double oct. 29.242 26.613 13.231 11.392

Table 2. Sound power ratios from the contact points Cl’ C2 and C3

Employing the first option, it is found that the optimization
algorithm places the contact point as low on the sound bow as
possible. This is caused by the fact that (except for the fifth) none
of the eigenmodes has a nodal circle near the lower part of the sound
bow. The resulting contact point Ci' see Fig. 64, is not very

practical, however. Trying to reach the target value of the fifth,
while placing little emphasis on the remaining six partials, the
contact point C, is obtained, which is situated on the sound bow, and

can used in practice. Employing the third option, i.e. (praéticallyﬁg
no excitation of the fifth, the contact point C3 is located on the

nodal circle of the fifth. From Table 2. it can be seen that for all
three options the target values have not been reached. Especially the
strength ratios of the lowest partials (i.e. the fundamental and the
third) are not even near the target values. It is concluded that there
is no contact point on this major third bell that yields
approximately the same sound power ratios as the minor third bell.
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